Preface

Ordinary Differential Equations (ODEs)

CHAPTER 1. First-Order ODEs

CHAPTER 2. Second-Order Linear ODEs

CHAPTER 3. Higher Order Linear ODEs

CHAPTER 4. Systems of ODEs. Phase Plane. Qualitative Methods

CHAPTER 5. Series Solutions of ODEs. Special Functions

CHAPTER 6. Laplace Transforms

PART B Linear Algebra. Vector Calculus

CHAPTER 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

CHAPTER 8. Linear Algebra: Matrix Eigenvalue Problems

CHAPTER 9. Vector Differential Calculus. Grad, Div, Curl

CHAPTER 10. Vector Integral Calculus. Integral Theorems

PART C Fourier Analysis. Partial Differential Equations (PDEs)

CHAPTER 11. Fourier Analysis

CHAPTER 12. Partial Differential Equations (PDEs)

PART D Complex Analysis

CHAPTER 13. Complex Numbers and Functions. Complex Differentiation

CHAPTER 14. Complex Integration

CHAPTER 15. Power Series, Taylor Series

CHAPTER 16. Laurent Series. Residue Integration

CHAPTER 17. Conformal Mapping

CHAPTER 18. Complex Analysis and Potential Theory

PART E Numeric Analysis Software

CHAPTER 19. Numerics in General

CHAPTER 20. Numeric Linear Algebra

CHAPTER 21. Numerics for ODEs and PDEs

PART F Optimization, Graphs

CHAPTER 22 Unconstrained Optimization. Linear Programming

CHAPTER 23. Graphs. Combinatorial Optimization

PART G. Probability, Statistics 1009

Software 1009

CHAPTER 24. Data Analysis. Probability Theory

CHAPTER 25. Mathematical Statistics